ENZYMES Uricase

ORIGIN Bacillus fastidiosus

CAT# URIC-70-1701 EC# 1.7.3.3

SPECIFICATIONS

Appearance White/off white free flowing powder

Powder Activity >10 U/mg powder at 37°C Specific Activity >15 U/mg protein at 37°C Catalase <1%

Cholesterol Oxidase <0.005% Glucose Oxidase <0.005%

APPLICATION

Uricase can be used (in test strips or other clinical chemistry formats) to determine the level of uric acid in blood for clinical diagnosis.

UNIT DEFINITION

One unit of activity is defined as the amount of enzyme that will catalyse the oxidation of 1.0 micromole of uric acid per minute at 37°C under the standard assay method conditions. Refer to Table 1 for guidance on factors to adjust according to temperature of assay.

TABLE 1: TEMPERATURE FACTORS FOR UNIT CONVERSION

Note: Temperature can influence the level of available oxygen in the reaction mixture.

ASSAY TEMPERATURE	FACTOR RELATIVE TO 37°C RESULT
25°C	0.23
30°C	0.48
37°C	1.00
45°C	1.16

ASSAY PRINCIPLE

Uricase catalyses the following reaction:

Uric acid + $2H_2 O_2 + O_2$ Allantoin + $H_2O_2 + CO_2$

CHARACTERISTICS

Uricase is a highly purified product and is formulated with BSA as stabiliser. Its main characteristics are as follows:

Molecular Weight ⁽¹⁾ :	38kD
Km (Eadie-Hofstee):	2 x 10 ⁻⁴ M (L-Ascorbic Acid)
Optimum pH (Fig. 1):	pH 7.0 (phosphate buffer)
Optimum Temperature (Fig. 2):	
pH Stability (Fig. 3):	pH 5.5 to -10.0 (25°C for 20 hours)
Thermal Stability (Fig. 4):	Stable at 50°C and below

TABLE 2: SUBSTRATE SPECIFICITY

Substrate specificity was tested in-house by replacing uric acid with alternative substrates in the assay i.e. at 2.3 mM concentration.

ASSAY TEMPERATURE	% OF URIC ACID ACTIVITY
Uric acid	100
8-Azaxanthine	0
Oxonic acid	0

FIGURE 1: OPTIMUM pH

FIGURE 2: OPTIMUM TEMPERATURE

Note: Uric acid is particularly insoluble under acidic conditions and so determination of uricase activity below a pH of 6.5 was not deemed practicable.

FIGURE 3: pH STABILITY (25°C FOR 20 HOURS)

FIGURE 4: THERMAL STABILITY (pH 7.0 FOR 15 MINUTES)

(1) Bongaerts, G.P.A. et al. (1978) Uricase of Bacillus Fastidiosus: Properties and regulation of synthesis. Biochimica et Biophysica Acta - Enzymology, 527 (2) pp.348-358.

THE AMERICAS

Sekisui Diagnostics, LLC 4 Hartwell Place Lexington, MA 02421 Phone: 800 332 1042 Fax: 800 762 6311

INTERNATIONAL

Sekisui Diagnostics (UK) Limited Liphook Way, Allington Maidstone, Kent, ME16 0LQ, UK Phone: +44 1622 607800 Fax: +44 1622 607801

engage@sekisuienzymes.com

