

ΕN

ACETAMINOPHEN L3K® ASSAY

CATALOGUE NUMBER: 507-30

SIZE: R1: 3 x 10 mL, R2: 6 x 10 mL, 1 x 5 mL calibrator

Note: Changes are highlighted.

INTENDED USE

For the *in vitro* quantitative measurement of acetaminophen in serum, lithium heparin plasma and sodium heparin plasma. Measurement of acetaminophen is used in the diagnosis and treatment of acetaminophen overdose toxicity.

TEST SUMMARY

Acetaminophen (paracetamol) is used as an analgesic in many different formulations.⁽¹⁾ While therapeutic doses rarely cause adverse side effects, the effect of long term treatment with acetaminophen is unclear. Cases have been reported where chronic excessive use of acetaminophen has led to hepatotoxicity and nephrotoxicity.^(2,3) In cases of acute overdosage, acetaminophen can cause severe hepatic damage leading to hepatic failure if untreated.^(4,5,6)

The management of acetaminophen overdose requires early recognition of the drug in the bloodstream. Toxicity is generally reported at concentrations over 200 μ g/mL (1324 μ mol/L). N-acetylcysteine has been used as an antidote in conjunction with intensive support care. Early diagnosis of acetaminophen-induced hepatotoxicity is important since initiation of therapy within 8 hours of ingestion lessens the potential for hepatic injury and decreases the mortality rate.⁽⁷⁾

The majority of methods for measuring acetaminophen are based on spectrophotometric or chromatographic principles. Chromatographic methods are specific for the parent compound; however, they are not well suited to emergency laboratories. Spectrophotometric methods are simpler and more rapid, but do not always offer the desired specificity.

TEST PRINCIPLE

 $\begin{array}{rl} Acyl \ Amidohydrolase \\ Acetaminophen & \rightarrow \ p\mbox{-}aminophenol\ +\ CH_3COOH \end{array}$

Mn²⁺

p-aminophenol + 2,5-dimethylphenol \rightarrow 4-(4-iminophenol)-2,5-dimethylcyclohexadiene-1-one

The enzyme, acyl amidohydrolase, cleaves the amide bond of the acetaminophen molecule, leaving p-aminophenol and acetate. The p-aminophenol is reacted with 2,5-dimethylphenol in the presence of manganese ions to form a colored compound, 4-(4-iminophenol)-2,5-dimethylcyclohexadiene-1-one. The increased absorbance at 605 nm due to the formation of 4-(4-iminophenol)-2,5-dimethylcyclohexadiene-1-one is directly proportional to the concentration of acetaminophen in the sample.

REAGENTS

Acetaminophen Enzyme Reagent (R1): A solution containing buffer (pH 8.6 at 25°C), 0.3 mmol/L MnCl₂•4H₂O, \geq 0.9 kU/L Acyl Amidohydrolase (microbial), 50 mg/L sodium azide.

Acetaminophen Color Reagent (R2): A solution containing 0.1 mol/L sodium carbonate buffer (pH 11.5 at 25°C), 31 mmol/L 2,5-dimethylphenol, stabilizer, preservative.

Acetaminophen Calibrator: 1 x 5 mL of a solution containing buffer (pH 5.2 at 25° C), 151 µg/mL (1000 µmol/L) acetaminophen, preservatives.

Internal reference standards are created for Acetaminophen using a USP grade reference Acetaminophen material (not less than 98% and not more than 102% of paracetamol on an anhydrous basis). Acetaminophen calibrator is manufactured gravimetrically and tested against these internal reference standards.

WARNINGS AND PRECAUTIONS FOR USE

For in vitro diagnostic use

RXONLY

See Safety Data Sheet for additional information.

REAGENT PREPARATION, STORAGE AND STABILITY

Reagents are ready for use.

Supplied reagents are stable at 2-8°C until expiry date. Stability claims are based on real time studies.

Instrument specific onboard stability is listed on the application sheets.

REAGENT DETERIORATION

The reagents should be clear. Turbidity would indicate deterioration.

DISPOSAL

Reagents must be disposed of in accordance with all Federal, Provincial, State, and local regulations.

SPECIMEN

Fresh, clear, unhemolysed serum, lithium or sodium heparinized plasma. Separated samples may be stored for up to 14 days at 4 to 8°C prior to being tested. If testing will be delayed more than 14 days, separated samples may be stored frozen at \leq -20°C for up to 45 days.⁽⁸⁾

LIMITATIONS/ INTERFERING SUBSTANCES (CLSI EP07-A2)⁽⁹⁾

Interferences from hemolysis, icterus and lipemia were evaluated for this acetaminophen method on a Roche/Hitachi[®] 717 using a significance criterion of > 10% variance from control.

Conjugated bilirubin concentration of up to 2 mg/dL (23.7 μ mol/L) did not interfere in samples with acetaminophen concentrations of 14.8 μ g/mL (98 μ mol/L). Unconjugated bilirubin concentration of up to 4 mg/dL (68.4 μ mol/L) did not interfere in samples with acetaminophen concentrations of 14.8 μ g/mL (98 μ mol/L).

Hemoglobin concentration greater than 200 mg/dL (31 μ mol/L) showed a positive bias of up to 32% at acetaminophen concentration of 14.0 μ g/mL (93 μ mol/L). Hemoglobin produces significant interference in this method; therefore, hemolyzed samples should not be used.

NOTE: Significantly reduced acetaminophen recovery has been demonstrated in situations where testing for acetaminophen toxicity has been performed on hyperbilirubinemic samples at acetaminophen levels in the range of $5.0 - 15.1 \mu g/mL$ (33 - 100 $\mu mol/L$). It is recommended that laboratories review the Rumack-Matthews Nomogram for patient ingestion status, treatment and monitoring protocols to determine the extent of the interference.

ANALYTICAL SPECIFICITY (CLSI EP07-A2)⁽⁹⁾

Cross Contamination studies have not been performed on automated instruments. Certain reagent/instrument combinations used in sequence with this assay may interfere with reagent performance and test results. The existence of, or effects of, any potential cross contamination issues are unknown.

Interferences from icterus, lipemia, hemolysis, ascorbic acid and N-acetylcysteine were evaluated for this acetaminophen method on the Roche/Hitachi[®] 717 analyzer using a significance criterion of >10% or $\pm 1.2 \ \mu g/mL$ (8 $\mu mol/L$) variance from control, whichever is greater. Plasma data is expected to be similar.

Substance Tested	Highest Tested Concentration with No Significant Interference	Acetaminophen Concentration		
Hemoglobin*	200 mg/dL (31 µmol/L)	4.5 μg/mL (30 μmol/L)		
	200 mg/dL (31 µmol/L)	14.0 μg/mL (93 μmol/L)		
	400 mg/dL (62 μmol/L)	28.4 μg/mL (188 μmol/L)		
	1000 mg/dL (155 µmol/L)	130.0 μg/mL (861 μmol/L)		
	2 mg/dL (23.7 µmol/L)	4.7 μg/mL (31 μmol/L)		
Conjugated Bilirubin*	2 mg/dL (23.7 µmol/L)	14.8 μg/mL (98 μmol/L)		
	32 mg/dL (380 µmol/L)	17.4 μg/mL (115 μmol/L)		
	40 mg/dL (475 µmol/L)	30.2 µg/mL (201 µmol/L)		
	40 mg/dL (475 μmol/L)	144.5 μg/mL (957 μmol/L)		
	2 mg/dL (34.2 µmol/L)	5.0 μg/mL (33 μmol/L)		
	4 mg/dL (68 μmol/L)	14.8 µg/mL (98 µmol/L)		
Unconjugated Bilirubin*	24 mg/dL (410 μmol/L)	17.4 μg/mL (115 μmol/L)		
Billrubill	24 mg/dL (410 μmol/L)	30.2 μg/mL (200 μmol/L)		
	40 mg/dL (684 µmol/L)	144 μg/mL (958 μmol/L)		
	3000 μg/dL (170 μmol/L)	4.5 μg/mL (30 μmol/L)		
	3000 μg/dL (170 μmol/L)	16.2 μg/mL (107 μmol/L)		
Ascorbic Acid	3000 μg/dL (170 μmol/L)	32.5 µg/mL (215 µmol/L)		
	3000 μg/dL (170 μmol/L)	142.8 μg/mL (946 μmol/L)		
	1500 mg/L (9.2 mmol/L)	4.5 μg/mL (30 μmol/L)		
N- Acetylcysteine	1500 mg/L (9.2 mmol/L)	16.6 μg/mL (110 μmol/L)		
	1500 mg/L (9.2 mmol/L)	32.5 µg/mL (215 µmol/L)		
	1500 mg/L (9.2 mmol/L)	139.2 μg/mL (922 μmol/L)		
Intralipid	600 mg/dL [1800 mg/dL (20 mmol/L) Simulated Triglycerides]	4.8 μg/mL (32 μmol/L)		
	1000 mg/dL [3000 mg/dL (34 mmol/L) Simulated Triglycerides]	15.1 μg/mL (100 μmol/L)		
	1000 mg/dL [3000 mg/dL (34 mmol/L) Simulated Triglycerides]	30.7 µg/mL (203 µmol/L)		
	1000 mg/dL [3000 mg/dL (34 mmol/L) Simulated Triglycerides]	135.6 μg/mL (898 μmol/L)		

* See additional information under the heading "Limitations/ Interfering Substances". Samples containing elevated levels of Immunoglobulin M (IgM) or samples from patients with Waldenstrom's Macroglobulinemia may produce unreliable results.

ANALYTICAL SPECIFICITY TO DRUGS

Interferences from the following therapeutic drugs were tested at acetaminophen concentrations of 4.2 μ g/mL (28 μ mol/L), 14.9 μ g/mL (99 μ mol/L), 32.5 μ g/mL (215 μ mol/L) and 143.5 μ g/mL (950 μ mol/L) and were evaluated for this Acetaminophen method on a Roche/Hitachi[®] 717 analyzer using a significance criterion of >10% or $\pm 1.2 \mu$ g/mL (8 μ mol/L) variance from control, whichever is greater.

Substance Tested	Concentration with No Significant Interference				
Theophylline	222 μmol/L				
Phenylbutazone	2.89 mmol/L				
Ibuprofen	2425 µmol/L				
Imipramine	2.5 µmol/L				
Acetylsalicylic Acid	6.51 mmol/L				
Levodopa	25.3 μmol/L				
Ampicillin	152 µmol/L				
Doxycycline	67.5 μmol/L				
Amitriptyline	3.61 µmol/L				
Metronidazole	701 µmol/L				
Cefoxitin	1546 µmol/L				
Cyclosporin	10.0 µmol/L				
Methyldopa	71 µmol/L				
Rifampicin	78.1 µmol/L				
Salicylate	4.34 mmol/L				

Samples containing NAPQ1 (N-Acetyl-4-benzoquinoneimine) may cause elevated levels of measured acetaminophen. Samples containing >20 mg/L metamizole may cause elevated levels of measured acetaminophen.

A summary of the influence of drugs on clinical laboratory tests may be found by consulting Young, $\mathrm{D.S.}^{(10)}$

ANALYTICAL PROCEDURE

MATERIAL PROVIDED

SEKURE Acetaminophen reagents and calibrator.

MATERIALS REQUIRED (BUT NOT PROVIDED)

- 1. Automated analyzer capable of accurately measuring absorbance at appropriate wavelength as per instrument application.
- 2. Acetaminophen L3K Reagent Application files for Automated Analyzer.
- 3. Quality control materials.

TEST CONDITIONS

For data presented in this insert, studies using SEKISUI Diagnostics acetaminophen reagent were performed on an automated analyzer using an endpoint test mode, with a sample to reagent ration of 1:41 and a wavelength reading of 660 nm.

For assistance with applications on automated analyzers within Canada and the U.S., please contact SEKISUI Diagnostics Technical Services at (800)565-0265. Outside Canada and the U.S., please contact your local distributor.

CALIBRATION

An acetaminophen calibrator is included and should be used as directed to calibrate the procedure. The frequency of calibration on automated systems is dependent on the system and the parameters used. See the instrument specific application sheet for the calibration stability.

QUALITY CONTROL

Appropriate concentrations of quality control materials should be analyzed as required in accordance with local, state and federal guidelines. The results should fall within the acceptable range as established by the laboratory.

CALCULATIONS

The analyzer calculates the acetaminophen concentration of each sample.

TEST LIMITATIONS

A sample with an acetaminophen concentration exceeding the linearity limit should be diluted with 0.9% saline and re-assayed incorporating the dilution factor into the calculation of the value.

REFERENCE INTERVALS⁽⁷⁾

Therapeutic concentration: 10-30 µg/mL (66-199 µmol/L)

Toxic concentration: $> 200 \ \mu g/mL (1324 \ \mu mol/L)$

These values are suggested guidelines. It is recommended that each laboratory establish its own expected range.

PERFORMANCE CHARACTERISTICS

Data presented was collected on a Roche/Hitachi $^{\circledast}$ 717 analyzer unless otherwise stated.

RESULTS

Acetaminophen concentration is reported as µg/mL (µmol/L).

To convert acetaminophen results to mg/L ($\mu g/mL)$ or mg/dL, use the following conversion factors:

 $\label{eq:mol} \begin{array}{l} \mu mol/L \ x \ 0.151 = mg/L \ (\mu g/mL) \\ mg/dL \ x \ 10 = mg/L \ (\mu g/mL) \end{array}$

NOTE: $1mg/L = 1\mu g/mL$ REPORTABLE RANGE (CLSI EP06-A)⁽⁹⁾

The linearity of the procedure described is $377.5 \ \mu g/mL \ (2500 \ \mu mol/L)$. The limit of quantitation of the procedure described is $1.2 \ \mu g/mL \ (8 \ \mu mol/L)$.

The reportable range is 17.4 to 377.5 µg/mL (115 to 2500 µmol/L).

PRECISION STUDIES (CLSI EP05-A3)(9)

Three levels of controls, two unaltered patient sera and two spiked patient sera were assayed in duplicate, twice a day, for twenty days (n = 80). Calibrations were performed daily. All samples were tested using 3 lots of Acetaminophen reagent.

Lot	Sample	N	Concentration (µmol/L)	Repeatability		Within Laboratory	
				SD (µmol/L)	%CV	SD (µmol/L)	%CV
	Control 1	80	67.2	1.8	2.7	2.5	3.8
	Control 2	80	237.3	4.4	1.9	6.1	2.6
	Control 3	80	764.3	13.4	1.8	14.3	1.9
A	Unaltered P1	80	170.3	2.1	1.2	2.4	1.4
	Unaltered P2	80	195.5	2.4	1.2	2.6	1.4
	Spiked 1	80	1295.9	11.5	0.9	19.7	1.5
	Spiked 2	80	2278.6	17.3	0.8	51.0	2.2
В	Control 1	80	66.6	1.1	1.7	2.4	3.5
	Control 2	80	237.6	3.9	1.7	5.8	2.4
	Control 3	80	765.2	14.2	1.9	14.2	1.9
	Unaltered P1	80	169.5	1.5	0.9	2.1	1.2
	Unaltered P2	80	195.4	2.6	1.3	2.6	1.3
	Spiked 1	80	1294.3	12.8	1.0	21.4	1.7
	Spiked 2	80	2281.5	15.9	0.7	52.3	2.3
С	Control 1	80	68.2	1.4	2.0	2.4	3.5
	Control 2	80	245.1	4.0	1.6	5.8	2.4
	Control 3	80	789.0	13.6	1.7	14.2	1.8
	Unaltered P1	80	175.0	1.6	0.9	2.0	1.2
	Unaltered P2	80	202.0	2.7	1.3	3.0	1.5
	Spiked 1	80	1339.3	13.8	1.0	22.5	1.7
	Spiked 2	80	2357.9	17.5	0.7	50.0	2.1

ACCURACY (CLSI EP09-A3)(9)

The performance of this method (y) was compared with the performance of a similar acetaminophen method (x) on a Roche/Hitachi[®] 717. A combination of 105 natural and spiked patient serum samples ranging from $17.5 - 369.5 \mu g/mL (116 - 2447 \mu mol/L)$ were tested. The Deming and Passing-Bablok data is summarized below.

Deming: This method = 0.974 (reference method) + 0.7 $\mu g/mL$ (4.7 $\mu mol/L)$ R = 0.9999

Passing-Bablok: This method = 0.975 (reference method) + 0.3 μ g/mL (2.3 μ mol/L) R = 0.9999

The performance of this method with plasma (y) was compared to the performance of this method with serum (x) on a Roche/Hitachi[®] 717. A combination of 40 natural and spiked serum and plasma samples ranging from $17.4 - 350.6 \ \mu\text{g/mL}$ (115-2322 μ mol/L) were tested. The Deming and Passing-Bablok data is summarized below.

Deming: This method (plasma) = 1.015 [This method (serum)] - 0.3μ g/mL (1.7μ mol/L) R = 0.9997

Passing-Bablok: This method (plasma) = 1.012 [This method (serum)] - 0.6 μ g/mL (3.7 μ mol/L) R = 0.9997

TRADEMARK

L3K[®] is a registered US trademark of SEKISUI Diagnostics. SEKURE[®] is a registered trademark of SEKISUI Diagnostics. All other trademarks, brands, product names are the property of their respective companies.

Symbols

(F

This product fulfills the requirements of the European Directive for In Vitro Diagnostic Medical Devices.

LOT

Manufacturer

Consult instructions for use

In vitro diagnostic medical device

Use by Date YYYY-MM-DD or YYYY-MM

Catalog number

EC REP

Authorized representative in the European Community

Temperature limit

RONLY

For use by or on the order of a physician only (applicable to USA classification only)

REFERENCES

- Ameer, B., and Greenblatt, D.J., Ann. Intern. Med. 87, 202 (1977).
- 2. Barker, J.D., de Carle, D.J., and Annras, S., Ann. Intern. Med. 87, 299 (1977)
- 3. 4.
- 5.
- (177).
 Prescott, L.F., Brit. J. Clin. Pharmacol., 7, 453 (1979).
 Black, M., Gastrent., 78, 382 (1980).
 Ambre, J., and Alexander, M., J. Am. Med. Assoc., 238, 500 (1977).
 Meredith, T.J., and Vale, J.A., Poisoning, Diagnosis, and Treatment., 104 (1981) 6.
- (1981). Burtis, C.A., and Ashwood, E.R., Eds, Teitz Textbook of Clinical Chemistry, Second Edition, pp 1168, 2212, W.B. Saunders Company, Philadelphia 7.
- 8. World Health Organization. Use of Anticoagulants in Diagnostic Laboratory
- *Investigations*. Geneva: World Health Organization; 2002:39. *CLSI Method Evaluation Protocols*, Clinical and Laboratory Standards Institute, Wayne, PA. Young, D.S., Effects of Drugs on Clinical Laboratory Tests, AACC Press, Third Edition, Washington, 1990. 9.
- 10.

MDSS GmbH Schiffgraben 41, 30175 Hannover, Germany Phone: (+49)-511-6262 8630 Fax: (+49)-511-6262 8633

IN50730-2 February 23, 2022

CE

The Americas SEKISUI Diagnostics P.E.I. Inc. 70 Watts Avenue Charlottetown, PE C1E 2B9 Canada Phone: 800-565-0265 Fax: 902-628-6504 Email: questions@sekisuidiagnostics.com techservices@sekisuidiagnostics.com

International

SEKISUI Diagnostics (UK) Limited Liphook Way Allington, Maidstone KENT, ME16 0LQ, UK Email: info@sekisuidiagnostics.com

sekisuidiagnostics.com

3